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Abstract. We make a direct and model-independent measurement of therfow mass phase
motion in theD* — m ™ decay. Our preliminary results show a strong phase variation,
compatible with the isoscalar(500) meson. This result confirms our previous result [1] where

we found evidence for the existence of this scalar particle using full Dalitz-plot analysis. We apply
the Amplitude Difference (AD) method [2] to the same Fermilab E791 data sample used in the
preceding analysis. We also give an example of how we extract the phase motion of the scalar
amplitude, looking at thé,(980) in D — "t decay.

INTRODUCTION

Fermilab experiment E791, with a full Dalitz plot analysis, showed strong evidence for
the existence of light and broad scalar resonances in cBarmeson decay [1, 3]. The
" 1 resonance is compatible with the isoscalar mes¢s00), and was observed in

the Cabbibo-suppressed deday — m " ir" . To get a good fit quality in this analysis,

it was necessary to include an extra scalar particle, other than the well established dipion
resonances [4]. For the new state, modeled by a Breit-Wigner amplitude, it was measured
a mass and width of 4783+ 17 MeV/c? and 32442+ 21 MeV/c?respectively . The

Dt — a(500)t" decay contribution is dominant, accounting for approximately half
of this particularD* — m "™ decay. We found also evidence for a scd{arm"
resonance, ok, in the Cabibbo-allowed deca™ — K~ "t [3]. Further studies
aboutk are discussed in this proceeding [5].

In full Dalitz plot analyses, each possible resonance amplitude is represented by a
Breit-Wigner function multiplied by angular distributions associated with the spin of
the resonance. The various contributions are combined in a coherent sum with complex
coefficients that are extracted from maximum likelihood fits to the data. The absolute
value of the coefficients are related to the relative fraction of each contribution and the
phases take into account the final state interaction (FSI) between the resonance and the
third pion.

Due to the importance of this scalar meson in many areas of particle and nuclear
physics, it is desirable to be able to confirm the amplitude’s phase motion in a direct
observation, without having to assume, a priori, the Breit-Wigner phase approximation
for low-mass and broad resonances [6, 7, 8]. Recently, a method was proposed to
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FIGURE 1. Them m"mt invariant mass spectrum. The dashed line represents the total background.
Events used for the Dalitz analyses are in the hatched areas.

extract the phase motion of a complex amplitude in three body heavy meson decays
[2]. The phase variation of a complex amplitude can be directly revealed through the
interference in the Dalitz-plot region where it crosses with a well established resonant
state, represented by a Breit-Wigner.

Here we begin with a simple example, showing that the AD method can be applied to
extract the resonant phase motion of the scalar amplitude due to the resdp@aa,
using the samé,(980) resonance in the crossing channel in the Dalitz plot of the decay
DS — m 't using E791 data [9]. This example shows the ability of this method to
extract the phase motion of an amplitude. Then we apply the AD method using the well
known f,(1270 tensor meson in the crossing channel, as the base resonance, to extract
the phase motion of the scalar low mass amplitude inD* — m " 1", confirming
the o(500) suggested by the E791 full Dalitz plot analysis [1].

EXTRACTING f,(980) PHASE MOTION WITH THE AD
METHOD.

From the original 2 10'° event data collected in 1991/92 by Fermilab experiment E791
from 500GeV/c m~ — nucleoninteractions [10], and after reconstruction and selection
criteria, we obtained ther "™ sample shown in Figure 1. To study the resonant
structure of these three-body decays we consider the 1686 events with invariant mass
between 1.85 and 1.89 GeV/dor theD* analysis and the 937 events with invariant
mass between 1.95 and 1.99 GeéAdor the D¢ Figure 2(a) shows the Dalitz-plot for
theDd — m ™ selected events and Figure 2(b) the Dalitz-plotdor— "t

events. The two axes are the squared invariant-mass combinations for, and the

plot is symmetrical with respect to the two identical pions.
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FIGURE 2. (a) TheDd — m mrtrrt Dalitz plot and (b) theDt — ™™ Dalitz plot. Since there
are two identical pions, the plots are symmetrical.

We can see in Figure 2(a) the scalgf980) in s, ,, the square invariant mass, crossing
the f,(980) in s, 5, forming an interference region arousd = s;, = 0.95Ge\#. The AD
method uses the interference region, between two crossing resonances, to extract the
phase motion of one of them, and Final State Interaction (FSI) phase, provided that the
second is represented by a Breit-Wigner [2]. In fact we are usBgatstrapapproach;
that is, using a well established resonarig80) in s, to extract its phase motion in
s,5 Itis a nice and didactic example to show the ability of this method to extract the
phase motion of an amplitude and the FSI phase within the E791 data sample.

The coherent amplitude to describe the crossing between a well known scalar reso-
nance, represented by a Breit-Wignesjp, and a complex amplitude under studysin
in a limited region of the phase space, where we can neglect any other contributions, is
given by:

A (S15,813) = AgBW (S1p) + 85/ (D" /1/S13)SINE (5,5)€ 0513 V) (1)

P*/\/S,3is a phase space factor to make this description compatiblermitscatter-
ing, v is the final state interaction (FSI) phase difference between the two amplitudes,
ap andag are respectively the real magnitudes of the resonance and the under-study
complex amplitude. Finallyin6(513)e‘5(313) represents the most general amplitude for a
two-body hadronic interaction.

The Breit Wigner distribution is given by:

gy = Mo

mg —s—imyl(m
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FIGURE 3. 1,(980) s, distribution, divided irm, + ¢ (black) andm, — £ (gray)

Taking the amplitude square of Equation 1 we get:

| (S10:51) [P= 8&| BH ggy(S10) > +82/ D72 /515 SITPS(5y)

23yl sind(s,2)/(P'/v/o1a) (s _
P ey (M= 5150008 8(5y9) )+ mlsin(i(syg) )] ()

Since the Breit-Wigner is approximately symmetrical aroagcas seen in Figure 3
(the asymmetries would come frantm), and is negligible for the narrovi(980)). We
can divide ourf,(980) mass distribution in two pieces, one fop+ £ and the other with
m, — €. From Equation 2 and noticing that the pure Breit-Wigner term will cancel we
can write:

.50 2 | o (.53 P~ E LT 255+ ) —siny) (2

Only the real part of the interference term in Equation 2 remains.

To extract the phase motion of the scalar amplituds, irthrough thef,(980) in s, ,,
represented by a Breit-Wigner, we took the events ybetween 0.7 and 1.2 Gé\and
divided them into two bins, as presented in Figure 3. $halistribution for the events
of thes,, region integrated between 0.95 and 1.2 &g¥ shown in Fig. 4a and the same
in Figure 4b for events integrated between 0.7 and 0.95%GeV

We can see that the peaks in these two plots are in diffesgnpositions. The
subtraction of these distributions, corresponds to the integration of Equation 3, that we
can write as:
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FIGURE 4. s;; distribution. a) For event:sf"”%’)éJrg | (S1pS3) | ds;,. b) For events
fm%ﬁg | o (S5,813) 12 dSp,.

Mg et+e mg
A= [ | sy sy [ | (559 P dsyy

eff eff

~ =% (sin(20(s;3) +Y) — siny) (4)

where% is a constant factor coming from the constant and integrated factors of Equation
3, to be determined from data. The variation of the phase space in the integral was
considered negligible for thé,(980) resonanceA [ <2 directly reflects the behavior
of 5(sy5). A constanth | <7 |2 would imply constan(s, ). This would be the case for
a non-resonant contribution. The same way a slow phase motion will produce a slowly
varyingA | <7 |? and a full resonance phase motion produces a clear signatitesh|?
with the presence of zero, maximum and minimum values.

The subtracted distribution, corresponding to Equation 4, is shown in Figure 5. There
is a significant difference between the minimum (bin3) and maximum (bin&)/af/2.

We can see in Equation 4 that the zeros occur whianp,) = 0°, 184 or /2 —y. In
Figure 5 we can see a zeros near 0.5GeV, another one as;; = 0.95GeV and a
third zero near 1.4GeX/ Assumingd(s,5) is an analytical function o, 5, Equation 4
allow us to set the two following conditions at the maximum and minimum values of
A [ /2 respectively:

B [ A sin(25(s15) +y) = -1 (5)

A / A2 sin(25(s;) +y) =1 ©6)

with these two conditions we g&t andy, calculated from the maximum and mini-
mum values of thé [ .27 distribution in Figure 5:
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FIGURE 5. s, distribution ofA [ .«72ds,.

C = (A/'Q{n%ax_A/'Q{nZ]in)/z (7)
; A 'Q{n%ax A JZ7r%in
y= Sln_l(AiﬂZ. :LAffﬂn%ax) (8)

From Figure 5 and using the equations above, we meastre-0.15+ 0.31, that is
compatible with zero, as should be since we are crossing the same resonances with, of
course, the same final state interaction phase.

With the above conditions we solve Equation 4 &5, 5):

5(519) = 5(5in N4 (539) P +5in(y)) ) ©

Assuming thatd(s,5) is an increasing function of,;, we can extract directly the
0(s,5) value from each bin of Figure 5, creating thg980) phase motion shown in Fig-
ure 6. The errors in the plot were produced by generating statistically compatible exper-

iments, allowing each bin oﬁn'%?J“ | 7 (S,5,5;3) |? (Figure4a) an(;fn”%%_‘E | 7 (S15,513) |?

(Figure4b) to fluctuate randomly following a Poisson law. We then solve the problem for
each "experiment". The error in each bind(s, ;) will be the RMS of the distributions
generated by the "experiments”.

From Figure 6 we can see what one could expect, that is the scalar amplitude near
970GeV with a phase motion of about £8@egrees. This example demonstrates the
ability of AD method to extract the phase motion of an amplitude with E791 statistics.
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FIGURE 6. 9(s;3) plot with the errors.

EXTRACTING THE SCALAR LOW MASS nmm AMPLITUDE
PHASE MOTION WITH THE AD METHOD.

In the preceding section, we showed how to apply the AD method to extract the phase
motion of an amplitude, from nonleptonic charm-meson three-body decay. Here we
apply the same method to extract the phase motion of the scalar lowAmiassplitude
in D™ — m "t decay, where we previously found strong experimental evidence
for the existence of a light and broad isoscalar resonance [1]. To start this analysis, we
have to decide what is the best well-known resonance to be used for crossing the low
mass amplitude under study. Taking a look at Figure 2b we can see the signature of
three resonances that in principle could be usedpti@0), f,(980) and f,(1270. In
fact, the E791 analysis of this Dalitz plot found a significant contribution from these
three resonances D™ — "™ decay [1]. Since thi®* decay is symmetric for
the exchange of tha™ meson, each resonancesy is present also is; ;. Then if we
usep(770) as the base resonancesp, we have also the presence of th€/70) in
same mass square distribution of #E500) in s;5. The proximity of thep(770) with
the 0(500), both broad resonances, creates an overlap between them such that we are
not able to separate the phase motion of one from the other. We could ukg986)
as a base resonance, but again the presence pf #7®) overlapping with thes (500)
creates the same problem.

There remains only the tensor mesigh1270 candidate atmg = 1.61GeV?, which is
placed where th@(770) contribution reaches a minimum due the angular distribution
in the middle of the Dalitz plot, as we can see from Bie — p(770) 1" decay Monte
Carlo simulation shown in Figure 7.

The amplitude for the crossing of thig(1270 in s;, and the complex amplitude
under study irs,5 is given in the same way as in Equation 1:
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FIGURE 7. MC p(770) distribution inD* — r— ™ mr™ decay. There is little contribution between 1.2
to 1.8Ge\?

ﬂ(slbsls):aR ‘%)sz(lzm(slz) 112%](2(127@(8127313)_{_ (10)
+ as/(p*/V/S1g) Sind(syy) €0V

Whereizz,///fz(lzw (12, S13) is the angular function for thé, (1270 tensor resonance.

The amplitude under study represents the scalar low masamplitude in a limited
region of the phase space, where we can neglect the other amplitude contributions.
Both the widthl(s,,) and the angular functioh=2./, (1279 from this resonance
2

produce asymmetries is;, and consequently we can not use the nomii4l270
mass to divide our sample into two slices, as we did for fifi@®80) example. So we
performed a Monte Carlo study to determine the effective mass we must uss,,The
Monte Carlo projection of thé, (1270 inD™ — m " ™ decay is shown in Fig. 8. We
can see the asymmetry created around the noniijta70 mass value due t6(s,,)
andlzz///fz(lzm) contributions to the amplitude.

Here we require an effective mass squaneg;¢), such that the number of events
integrated betweemZ, ; andmZ, + € is equal, by construction, to the number of events
integrated betweem?; and m2;; — €. We choose, using th&,(1270 Monte Carlo
distribution, a mass ofnZ;; = 1.535GeV2, within +0.26GeV2 1, in such way that we
can write:

1 within this mass region, the amount@f770) events was estimate to be around 5%
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FIGURE 8. Monte Carlof,(1270 s, , distribution, divided irm,, + £ (black) andm, — & (gray)
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The effective mass squarex,; and the separation betweeng;; + € (black) and
mgff € (gray) are shown in Figure 8.
The =24, 1,(1270) function ins, 5 is presented in Figure?9The distribution between

mé;; and mgff+£ is shown in Fig. 9a, for events betwem3,;; andm?; — ¢ in Fig.
9b. We can see that these two plots are slightly different. However we considered the
approximation —2,/// f,(1270 (513) 2,/// (1270 (s;3) and take an average function

—2/// f,(1270 (S13)- Another important effect that we had to take into account, is the

zero of this function as, ; = 0.48GeV2. Below we discuss the consequences of that in
the AD method.

With the above considerations about thg1270 in s;, ands,; we can write the
integrated amplitude-square difference as:

Meyte M+
afat= [ 1 s Pone- [ 125 P,

eff

o (si25(syg) ) siy) I My 110(59)/ (P Vo) (12)

2 Since we divided our data sample by this function, we represent this function in a histogram with the
same binning of data.
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FIGUREQ. FastMCI=2.2, .7
events betweemZ,; andm?; ; — €.

distribution ins, 5. &) For events betweenZ; andmZ; ; + . b) For

This Equation is similar to Equation 4, with an extra angular function term
j=2 3
P (1270 (S13) -

The background and the acceptance are similar betwggrandm?;  + € andm?

andm2; — €. Since we are subtracting these two distributions, we do not take into
account these effects in our analysis.
The [ @72 in s 5, for events integrated i} , betweemmZ = 1.535GeV? andmg; + €

andmZ;; andmZ;; — &, with € = 0.26GeV? are presented in Figure 10a and b respec-
tively.

Subtracting these two histograms, in the same way we did fof ${880) example,
gives theA [ .72 of the Equation 12. The result is shown in Figure 11.

Here we can not extract directly the phase motion from Figure 11, as we did for the
f,(980) example using the conditions 5 and 6. We have to dividefttfer? by .#
(average of the distributions in Figures 9a and b) and multiplp’hgince phase space
here is an important effect. By doing this the omsly, dependence of the right hand
side of Equation 12 is i (s;). However, as we could see in Figure 9, there is a zero
about 0.48GeY in the angular function, which means a singularity around this value
inA [ .<7?/.4 . To avoid this singularity, we first produced a binning in such a way that
the singularity is placed in the middle of one bin. In Figure 12 we showAtfie7? by
# distribution. We can see that the 6th bin (around 0.48&geNas a huge error, that
corresponds to the bin of the singularity. Due to the singularity we decided not to use

3 For short we shall use, from here d'r_rF‘///_fz(lzm (S13) = A and p*/v/Si3= P
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FIGURE 11. s, distribution forA [ /2.

this region (bin 6) further in this analysis. The consequences of this choice are going to
be taken care of in systematic error studies. In any case, the singularity could only affect
the position of the minimum of Figure 12. It does not interfere with the general feature
of starting at zero, having statistically significant maximum and minimum values, and
coming back to zero, indicating a strong phase variation. Bins 2 and 5 are respectively
the maximum and minimum value & [ .7?p’/.# of Figure 12 where we use the
Equation 5 and 6 conditions.

With the same assumptions used for #¢€980), that isd(s, ;) is an analytical and
increasing function 0§, ;, and using Equation 7, 8 and 9 (multiplied pyand divided
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FIGURE 12. s, distribution forA [ <72 p' /..

by ,///_) we can extract and d(s;;) from Figure 12. For the FSI phase we found
y=3.26+0.33, that is somewhat bigger than found by the E791 full Dalitz-plot analysis
[1] (Vpaiit, = 2.59+0.19). The fact that we used the effective mass for th@270 =

1.535 Ge\f instead of the nominal mass is responsable for the shift observed in the
relative phase. To verify this statement we generated 1000 samples of fast-MC, with
only two amplitudesf,(1270 and g (500). For both we used Briet-Wigner functions

and the E791 parameters. We generated the phase difference of 2.59 rad, measured by
the E791. For these 1000 samples, we meaguising the method presented here. The
result has a mean value of 3.07. We can say that the difference between the generated
and measureg value is a correction factor due to the use of an effective mass. Using
this offset factor ( 2.59 - 3.07 = -0.48) we correct the measurempen8.26+ 0.33 to

Yeorr = 2.78+ 0.33. So the observegdifference between Dalitz analysis and e

is in good agreement, with a difference below one standard deviation.

The (s, ;) was extracted bin by bin, with the same approach for the errors used in the
f,(980) example, and we got the distribution shown in Figure! 18/e can see a strong
phase variation of about 18@round the mass for th&(500), showing a phase motion
compatible with a resonance.

CONCLUSIONS

We showed that the AD method can be applied to E791 data to extract the phase motion
of the resonancé,(980) in the Dallitz plot of the decapd — m m" ir™ . This example
demonstrates the ability of this method to extract the phase motion of a resonance

4 In Figure 13 there is no the 6th bin because of the singularity we mentioned above.
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FIGURE 13. Phase motiod(s, ) distribution for the scalar low magsTamplitude, with the errors.

amplitude.

Preliminary E791 results present a direct and model-independent approach, obtained
with the AD method, and confirms our previous result of the evidence of an important
contribution of the isoscalar(500) meson inD* —  rh ™ decay [1]. We use the
well known f,(1270 tensor meson in the crossing channel, as the base resonance, to
extract the phase motion of the low mas® scalar amplitude. We obtain &(s, )
variation of about 189 consistent with a resonaat(500) contribution. We also obtain
good agreement between the B&J;r observed with AD method and theobserved in
the full Dalitz plot analysis.
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